skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ahuchaogu, Chinedu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Cellular respiration is the process by which organic matter oxidizes, and the energy stored in the chemical bonds of the food releases. Normally, cellular respiration occurs inside the mitochondria of cells; however, a unique type of bacteria releases electrons externally. These specialized organisms are called electrogenic bacteria. Our goal is to construct a microbial fuel cell (MFC) with electrogenic bacteria, harvest the external electrons created by cellular respiration, and channel them through an external circuit to generate electricity. Mud soil, which has a high number of electrogenic bacteria in the environment, was used to construct an MFC. In the presence of gram-negative bacteria, which exist in both aerobic and anaerobic conditions, the constructed MFC delivered electrical energy to an external circuit. The MFC can generate electricity, and thereby power, from biodegradable substances and organic wastes found in the environment and landfills. They can also be used to power small devices and sensors used in day-to-day activities. To determine the effect of sugar on the growth and development of bacteria present in the MFC, the quantity of sugar administered will be monitored in relation to the power generated per day. 
    more » « less